

syngenta.

Poucas opções químicas disponíveis...

Imidaclorpride e clorpirifos estiveram disponiveis no passado

 Atualmente, em Portugal, só piretróides, como uso menor. Familia química muito antiga.

Impacto das melolontas – campos de golfe

- Em geral, estima-se que o impacto de não ter inseticidas para controlar as melolontas no futuro custará ao Reino Unido e à indústria de golfe £ 50,0-86,6 M de ROI
- Estima-se que um campo de golfe representativo, afetado pela praga, gaste £5.900 por ano em controle do inseto

Medidas de controlo atuais

- Inseticidas piretróides autorizados em uso menor. Resistência? Eficácia?
- Nemátodos entomopatogéncios também poderão eventualmente ser autorizados mas a sua eficácia é baixa

Diferentes condições ambientais

- Larvas de melolontas e típulas geralmente ocorrem em diferentes condições ambientais e não se encontram associadas
- Larvas de melolonta estão principalmente associadas com solos ligeiros, abertos e arenosos que são bem drenados
- As típulas estão associadas a solos de francos ou solos argilosos que permanecem mal drenados


Prejuízos causados

- As típulas e as melolontas alimentam-se de raízes e matéria orgânica; as típulas também se alimentam de folhas
- A relva sob stress será mais severamente danificada
- Pássaros em busca das típulas bicam e danificam a superfície do relvado e causam 'cicatrizes'
- Vários mamíferos (por exemplo: javalis) também podem causar danos à superfície do relvado em busca de larvas

O que é o Acelepryn

- 1 Acelepryn® contém a substância ativa CLORANTRANILIPROL
- 2 Nova Família Química DIAMIDA
- 3 Novo Modo de Ação MODULADOR DOS RECETORES DE RIANODINA
- 4 Baixa solubilidade em água
- 5 Ação residual prolongada
- 6 Baixas doses de uso

Acelepryn está autorizado em vários países

Acelepryn: apresentação do produto

- Suspensão concentrada 200g clorantraniliprol por litro
- Aplicar em pulverização
- Odor discreto e excelente compatibilidade
- 0.6 l/ha dose aprovada
- Embalagem de 600 ml = 1 ha

Zonas autorizadas de Aplicação

Espaços de lazer

Campos de aviação e Áreas industriais

Campos de jogos

Acelepryn – Diamidas Antranílicas

Inspirado em Origens Naturais
História do Desenvolvimento:

- As propriedades inseticidas de extratos solúveis em água da planta tropical Ryania speciosa foram relatadas por pesquisadores da Rutgers University e da Universidade de Cornell em 1945
- O extrato continha vários compostos estruturalmente relacionados, incluindo rianodina, e produtos comerciais não estavam disponíveis até ao final da década de 1990
- A rianodina ativa o canal de libertação do cálcio e causa paralisia nos insetos causando uma contração prolongada dos músculos
- O desenvolvimento das diamidas antranílicas foi iniciado no início dos anos 2000 através de pesquisas direcionadas ao canal de cálcio

Acelepryn perfil excelente

Inspirado na natureza

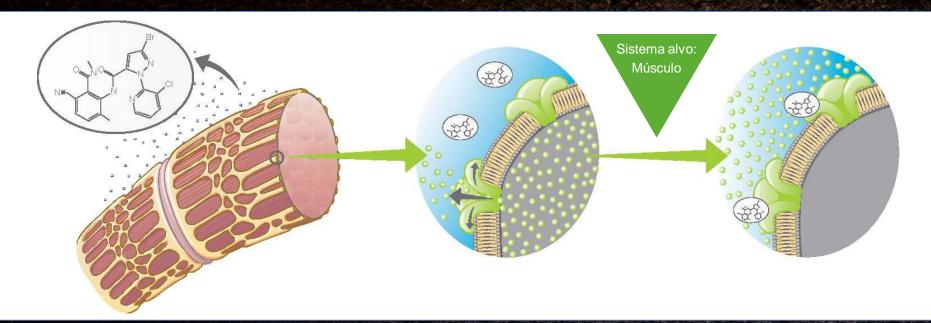
Propriedades inseticidas de extrato de rianodina da planta tropical *Ryania* speciosa estudadas por investigadores

Registado como Baixo Risco para uso em relvados pela EPA dos EUA sob seu Programa de Pesticidas de Baixo Risco:

- 1. Família química diferenciada
- Modo de ação só afetas os músculos dos artrópodos
- 3. Perfil toxicológico e ambiental excelente
- 4. A mais baixa solubilidade em água para controlo de larvas de insetos

Como atua

Diamidas Antranílicas: Família Química Única


- Os recetores de rianodina regulam a libertação de cálcio que desempenha um papel fundamental no controle muscular dos Artrópodos
- Outros animais não usam cálcio da mesma forma e não são afetados
- O Acelepryn liga-se ao recetor de rianodina e bloqueia-o deixando-o num estado parcialmente aberto
- Dá-se uma libertação descontrolada de cálcio e interrompe-se a contração muscular normal
- Em última análise, os resultados são a paralisia e morte do inseto
- Mais ativo em larvas de coleópteros (ou seja, larvas de melolonta, larvas de escaravelhos), larvas de mosca (ou seja, típulas) e lagartas (lepidópteros).
- Tem propriedades translaminares quando pulverizado nas folhas:

Modo de ação único

MODULADOR DOS RECETORES DE RIANODINA

Fase 1 - Exposição

Contato com insetos com substância ativa através do contato ou ingestão

Fase 2 – Activação

Clorantraniliprol liga-se e ativa os recetores de rianodina localizados no músculo dos insetos fazendo com que eles abram

Fase 3 - Paralisia

lões de cálcio fluem dos recetores de rianodina abertos, esgotando o cálcio necessário para a contração muscular. Paralisia do músculo do inseto resulta na sua morte

Acelepryn deve ser aplicado de forma preventiva

Instar = a forma que o inseto toma entre as mudas

ACELEPRYN SÓ ATUA NO 1º E 2º INSTARES

1º Instar

2º Instar

3° Instar

Adulto

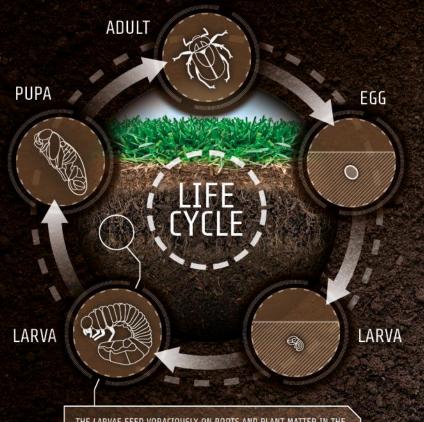
Lixiviação reduzida e alta estabilidade no solo

Substãncia ativa	Solubilidade					
Clorantraniliprol	1 mg/l					
Imidaclopride	514 mg/l					

Devido à baixa solubilidade, a rega, a humidade do solo ou as chuvas são importantes para mover o produto em profundidade no perfil do solo

Movimento gradual na camada de matéria orgânica

Atividade de longa duração na 'zona das larvas'


Locais de Elevado Risco de Besouros

- Mais abundante em regiões mais quentes e húmidas
- Principalmente associados com solos leves, abertos e arenosos
- Fomentados por altos níveis de matéria orgânica
- Áreas infestadas anteriormente são de maior risco
- Perto de árvores e arbustos

Ciclo de vida dos besouros (pão de galo)

THE LARVAE FEED VORACIOUSLY ON ROOTS AND PLANT MATTER IN THE SOIL, WITH THE FASTER GROWING SPECIES – SUCH AS HETERONYCHUS LICAS AND MALADERA INSANABILIS – PARTICULARLY DAMAGING. WHITE GRUB ATTACKS CAN BE SPORADIC AND TRIGGERED BY A SUDDEN

- Todos os besouros têm as mesmas fases da vida – ovo, larva, pupa e adulto
- A larva passa por três mudas e cada um desses subestádios é chamado de instar

Pão de galo (Melolontha paposa)

- Adultos de grandes dimensões
- Muito comum em diversas culturas
- Adultos de 10 a 30mm com coloração castanha. Dimorfismo sexual acentuado com as antenas dos machos em forma de clava hipertrofiada
- Ciclo biológico de três anos, com gerações sobrepondo-se ao longo do ano.
- Os adultos aparecem entre finais de Abril /Maio (dependente da temperature do solo na primavera)
- Entre Maio e Julho as fêmeas depositam os ovos no solo, em aglomerados de 20 a 30 e a 10 – 40 cm de profundidade

Pão de galo (Melolontha paposa)

- Os ovos postos de Maio a Julho, eclodem em 19 dias até 6 semanas.
- As larvas do 1º e 2º instar alimentam-se das raízes das plantas durante o primeiro verão.
- Ocorre a 1ª muda em fins de Agosto, princípios de Setembro. As larvas L2, no fim do Outono, aprofundam-se no solo e entram em hibernação.
- Estas larvas voltam a alimentar-se na primavera seguinte quando a temperatura do solo sobe.
- Em Junho sofrem uma 2ª muda. As larvas L3 são muito ativas desde Junho até ao final do Outono data em que descem no solo e entram em hibernação.
- As larvas do 3ª instar completam o ciclo no terceiro ano. Depois enterram-se no solo até ao estádio de pupa.

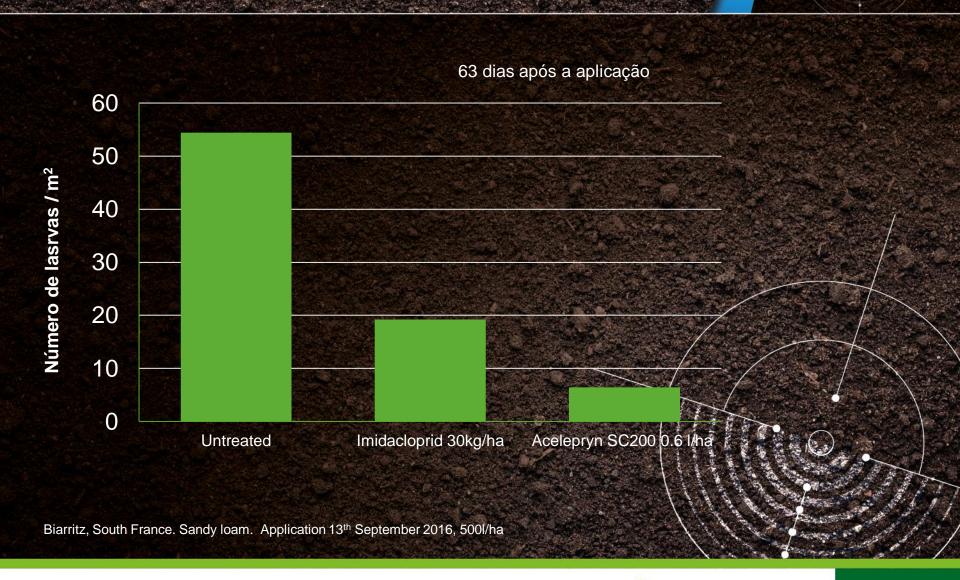
Outras melolontas presentes em Portugal

As Melolontas todas têm 3 instares larvares


ACELEPRYN SÓ ATUA NO 1° E 2° INSTARS

Limiares de prejuízos nos relvados

Larvas m2	Pode ser superado quando em boas condições					
até 60						
60-100	Prejuízos podem ocorrer em condições stressantes					
100-200	Prejuízos significativos no relvado					
200-600	Prejuízos rápidos e graves vão ocorrer no relvado					


Recomendações de épocas - Acelepryn

JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
			A	DULTOS				14			
				0	/OS						
					1º INST	TAR					
			20 INC					2º INSTAR			
			2º INSTAR								
			3º INST	AR			3º INSTAR				
PL	JPAS									1	
				ACE	ELEPRYN						
	ANT			APL	ICAÇÃO					1	

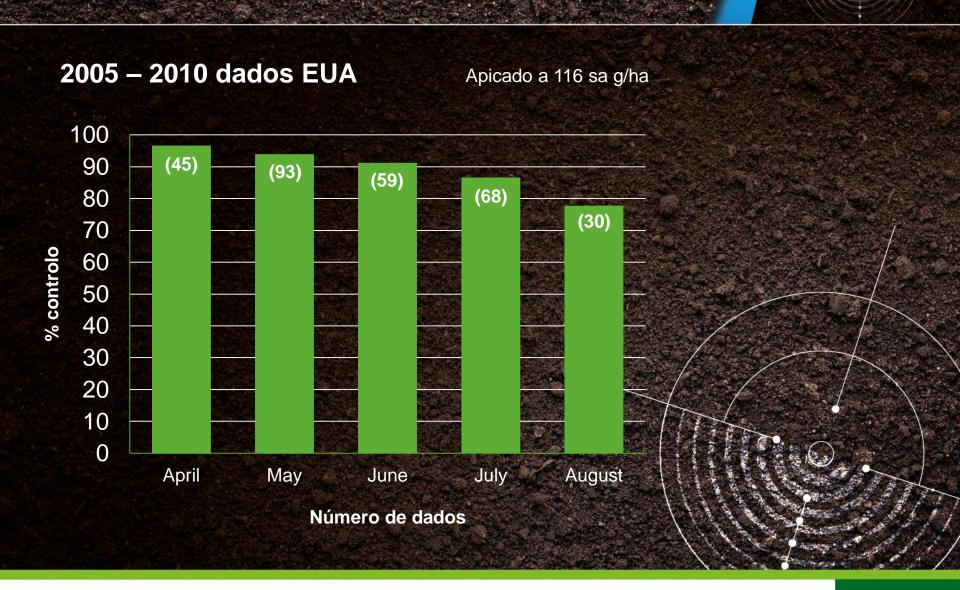
Controlo do Pão de galo 2017

Controlo de Pão de galo com Acelepryn SC

10

0

Acelepryn 0.58 l/ha



Imidacloprid 330 g ai/ha

Acelepryn – Controlo do Pão de galo / mês de aplicação

Locais de Risco Elevado

- Portugal encontra-se na zona europeia da sua presença
- Áreas com maiores precipitações geralmente conduzem a populações mais elevadas do que áreas mais secas
- As larvas de típula preferem solos húmidos e pesados e a presença de matéria orgânica

Típulas · As larvas por vezes chamadas de "casacos de couro" A mais comum é a: Tipula paludosa

Larvas de Típula

- As larvas têm o corpo mole, castanho a acizentado e têm até 5 cm de comprimento
 - Cápsula negra da cabeça cai quando perturbadas
- Sem patas (ápodas)
 - Exoesqueleto rígido

Ciclo biológico das Típulas

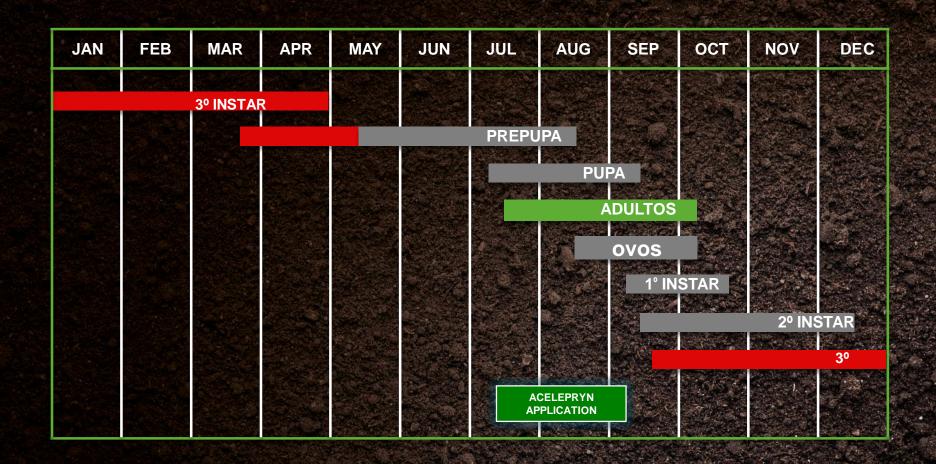
- Os adultos emergem entre Agosto e Setembro
- Os adultos não se afastam muito do local da emergência e depositam os seus ovos num período de 32 horas
- Podem depositar até 400 ovos com conjuntos de 6 ou menos ovos por local de oviposição
- Os ovos são de um castanho escuro e são depositados no solo na base dos caules das gramíneas
- Os ovos eclodem 14 dias depois e as larvas começam imediatamente a alimentar-se

Ciclo biológico das Típulas

- As larvas do 1º instar têm cerca de 0.3 cm de comprimento crescendo até aproximadamente 1 cm após um mês
- Atingem 2.5 4 cm após o período de alimentação na primavera
- As larvas então movem-se em profundidade no solo, no verão, para atingirem o estado de pupa
- As pupas contorcem-se até a superfície do solo pará o adulto emergir

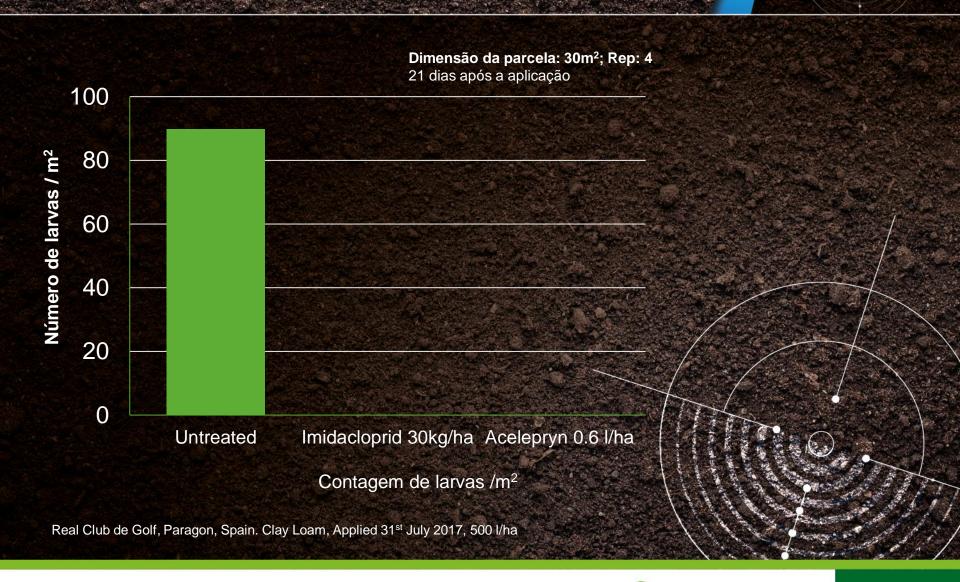
Limiares indicadores para Típulas

Relvado	Larvas por m2				
Campo de golfe	16				
Campo de aviação	35				


Uma vez que as larvas são avistadas é tarde demais para aplicação.

Os limiares fornecem orientação com base em infestações anteriores.

Ciclo biológico e Época de Aplicação


Controlo de Típulas (Tipula paludosa)

Controlo de Típulas (Tipula paludosa)

Previsão do risco

- Para as melolontas, armadilhas com feromonas (colocadas em Maio) são usadas para determinar o aparecimento dos adultos e determinar a época precisa de aplicação inseticida
- Existem, nalguns países, recomendações precisas para o nº de adultos que podem constituir uma orientação
- No caso das típulas, o aparecimento de adultos é geralmente sincronizado, com o vôo de Agosto/Setembro
- Usar a presença dos adultos de típula para determinar a época ideal de aplicação de inseticidas visto que os ovos são postos em questão de dias
- Um relvado com histórico conhecido de infestação terá um maior risco
- Locais previamente atacados têm 80% de possibilidade de repetição de prejuízos

Aplicar pouco antes da oviposição

Recomendações de uso – antes da aplicação

- Os melhores resultados serão alcançados quando a atividade da jovem larva ocorrer perto da superfície do solo e em contato com o Acelepryn
- Cortar a relva antes da aplicação
- Uma rega antes da aplicação incentivará as larvas até à superfície e melhorará o controlo
- Um thatch profundo incrementa o nº de larvas e reduz o movimento do Acelepryn até a zona de presença das larvas. Reduzir a acumulação de thatch para um melhor desempenho

Recomendações de uso – após a aplicação

- Se possível regar após a aplicação
 - Uma rega ligeira para as Típulas
 - Uma rega mais abundante para as Melolontas
- Se a rega não for possível, a pluviosidade natural pode mover o produto para a zona de presença das larvas
- O corte pode remover uma quantidade significativa de produto com os restos de relva se n\u00e3o houver uma rega (ou ocorrer chuva)
- Retardar o corte o máximo possível após a aplicação, a ménos que seja feita uma rega
- Se não ocorreu chuva ou irrigação, reponha os restos da sega sempre que possível

Melhor penetração na camada de MO

- Use o bico de solo 08 XC para melhor penetração na matéria orgânica
- Risco de deriva mais reduzido
- Mais dias para pulverizar
- Pulverização mais uniforme
- 500 -1000 l/ha de volume de calda

Recomendações Base

Resumo - períodos de aplicação

A aplicação temporã é melhor do que atrasada - larvas pequenas são mais fáceis de eliminar e o produto persiste

	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out
Melolontas						-		
				(安装)		10-24	100	
Típulas								
		10.12		1				4

Nota:

Temperaturas durante a primavera determinam emergência de adultos

As Melolontas podem emergir por um período mais longo até Julho ou até Agosto.

Monitorizar regularmente os períodos de pico de voo

Tank-mixing Sequence:

Add different formulation types in the sequence indicated below. Allow time for complete mixing and dispersion after the addition of each product.

- Water-soluble bags
- Water-dispersible granules
- Wettable powders
- Acelepryn and other water-based suspension concentrates
- Water-soluble concentrates
- Oil-based suspension concentrates
- Emulsifiable concentrates
- Adjuvants, surfactants, oils
- Soluble fertilizers
- Drift retardants